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T cell receptors (TCRs) are generated by somatic recombination of
V/D/J segments to produce up to 1015 unique sequences. Highly
sensitive and specific techniques are required to isolate and iden-
tify the rare TCR sequences that respond to antigens of interest.
Here, we describe the use of mRNA sequencing via cross-linker reg-
ulated intracellular phenotype (CLInt-Seq) for efficient recovery of
antigen-specific TCRs in cells stained for combinations of intracellu-
lar proteins such as cytokines or transcription factors. This method
enables high-throughput identification and isolation of low-fre-
quency TCRs specific for any antigen. As a proof of principle, intra-
cellular staining for TNFα and IFNγ identified cytomegalovirus
(CMV)- and Epstein-Barr virus (EBV)-reactive TCRs with efficiencies
similar to state-of-the-art peptide-MHC multimer methodology. In a
separate experiment, regulatory T cells were profiled based on in-
tracellular FOXP3 staining, demonstrating the ability to examine
phenotypes based on transcription factors. We further optimized
the intracellular staining conditions to use a chemically cleavable
primary amine cross-linker compatible with current single-cell se-
quencing technology. CLInt-Seq for TNFα and IFNγ performed simi-
larly to isolation with multimer staining for EBV-reactive TCRs. We
anticipate CLInt-Seq will enable droplet-based single-cell mRNA
analysis from any tissue where minor populations need to be
isolated by intracellular markers.
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The adaptive immune response depends on T cell receptor
(TCR) diversity to orchestrate a defense against any foreign

antigen (1, 2). The αβ TCR is a heterodimer of alpha and beta
polypeptides that as a pair recognize peptides, derived from
proteins, presented on the major histocompatibility (MHC)
complex (3). Alpha and beta chains are generated in the thymus
by random somatic recombination of the V, D, and J regions to
yield a theoretical diversity of over 1015 clonotypes (3). Those
TCRs that react with self-derived epitopes or do not recognize
MHC are predominantly deleted during development (4). One
recent estimate of adult TCR diversity in the peripheral blood is
108 unique clones (1). Isolating rare antigen-specific TCR se-
quences from such diverse populations remains a significant
technical challenge.
Robust techniques have been developed for sequencing TCRs

of immunodominant viral and tumor T cell responses (5–10).
Immunodominance is the observation that the immune response
is focused on a small number of antigenic epitopes and was
initially discovered when only one MHC allele allowed the im-
mune recognition of virus-infected cells (11). Peptide-MHC
multimers representing these epitopes are used for physical
staining of the TCR and allow for robust and antigen-specific
TCR sequencing, often via fluorescence-activated cell sorting
(FACS) selection of the multimer-positive population (6, 12).

Multimer-based isolation of T cells coupled with TCR se-
quencing revolutionized our understanding of how viral antigens
produce T cell responses (13, 14). However, these reagents are
epitope specific and laborious to construct and so are best suited
for studying a small number of well-defined, dominant epitopes
(13, 15).
More recently, surface activation markers such as CD137 and

CD107a/b have been used to isolate live T cells that have been
activated in vitro, allowing for isolation and sequencing of anti-
gen-specific TCRs without multimer staining (5, 8). These acti-
vation marker techniques permit isolation of TCRs reactive with
previously undefined epitopes (8, 10). The activation marker
CD137 has been used for isolation of novel tumor-associated, as
well as neoantigen-reactive TCRs (8, 10). Once cells are isolated,
single-cell sequencing can produce TCR alpha/beta pair identity
of thousands of cells (16–18). Cell surface markers like CD137
are used as proxies for the intracellular effector molecules that
respond to T cell activation and can return a false positive signal.

Significance

T cell receptors (TCRs) surveil cellular environment by recog-
nizing peptides presented by the major histocompatibility
complex. TCR sequencing allows for understanding the scope
of T cell reactivity in health and disease. Specific TCR clones can
be used as therapeutics in cancer and autoimmune disease. We
present a technique that allows for TCR sequencing based on
intracellular signaling molecules, such as cytokines and tran-
scription factors. The core concept is highly generalizable and
should be applicable to global gene expression analysis where
intracellular marker-based cell isolation is required.
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These surface activation markers are expressed on up to 0.5% of
CD8+ T cells in absence of TCR stimulation. This background
expression could make it difficult to specifically identify low-fre-
quency responses. Yet many therapeutic T cell responses to
viruses and tumors are against undefined, low-frequency epitopes.
We sought to establish an mRNA sequencing protocol that

could characterize low-frequency T cell populations of defined
phenotype and function. We surmised that a method based on
intracellular protein profiling could provide the desired addi-
tional specificity. Such a method would allow targeting of any
protein, including cell type-defining signaling molecules and
transcription factors. Transcription factors (TFs), alone or in
combination, are lineage-defining molecules and have been
shown necessary and sufficient for cell differentiation and
identity in many contexts (19–23). For example, in the neuronal
lineage, the TFs SOX2, PAX6, and EOMES identify human
radial glia progenitors (24). In T cells, our area of interest,
FOXP3 uniquely marks T regulatory cells (Tregs), which can
oppose cytotoxic T cell responses and either prevent destruction
of healthy tissue or promote tumor progression (25–29). Another
CD4+ cell type involved in tissue homeostasis is Th17 cells,
which produce IL-17 and protect organs from bacteria, but can
also mediate autoimmune pathology in an IFNγ-independent
manner (30). The RORγt transcription factor directs differen-
tiation and identifies Th17 cells (30, 31).
Antigen-specific CD4+ and CD8+ T cells are often quantified

by their intracellular cytokine production capacity (32–34). Cy-
tokine secretion is first inhibited and subsequently cells are
permeabilized for cytoplasmic cytokine staining (33–35) and flow
cytometric analysis. Epitope mapping studies have used intra-
cellular staining (ICS) as a measurement of reactivity and
established the antigen scalability of this approach (32, 33, 36).
This technique has very low background, in the absence of
stimulation through the TCR (35, 37). Different antigen stimu-
lation approaches can be combined with ICS and exact epitope
knowledge is not required (36, 38). For discovery purposes, pools
of over 100 peptides can be routinely used (33, 36, 39, 40).
Single-cell sequencing of neuronal cells selected based on an

intracellular antigen has been described; however, that technol-
ogy has not been performed with the droplet-based sequencing
required to rapidly process reactive TCRs (24). More recently,
methanol-based permeabilization has been used to select a
population of cells based on an intracellular marker for droplet-
based sequencing (41). In this work, we define a technology for
droplet-based mRNA sequencing in cells fixed and per-
meabilized for ICS. This technology, CLInt-Seq (sequencing via
cross-linker-regulated intracellular phenotype), performs simi-
larly to multimer-based approaches but can be used to discover
new peptide-TCR pairs. As proof of principle, we used CLInt-Seq
to sequence TCRs in Epstein-Barr virus (EBV)-reactive CD8+

T cells selected for TNFα and IFNγ expression. For comparison,
selection with multimers was performed in parallel and had
comparable efficiency. We also demonstrate that the technology
can be applied to sequence Treg cells by profiling the lineage-
specific transcription factor, FOXP3. Finally, we adapt the method
to be compatible with a single-cell sequencing platform that allows
comprehensive profiling of the αβ TCR response.

Results
Intracellular Staining Identifies Antigen-Specific T Cells with a Lower
Rate of False Positives than Cell Surface Profiling by the Activation
Marker CD137. To compare the specificity of surface activation
markers and ICS for the identification of reactive T cells, we
tested the ability of both techniques to identify true positive
antigen-specific T cells in an activation assay. Tissue-restricted
antigen NY-ESO-1, which is overexpressed in multiple tumors,
and a cognate TCR (clone 1G4) colinked to NGFR were used to
create a model system for estimating the specificity of the ICS

approach compared to the CD137 method (12, 42, 43). False
positives were defined by flow cytometry as events that expressed
an activation marker but not the TCR construct. To produce a
simulated population that is about 1% positive, a TCR-trans-
duced population was added into an untransduced population of
cells (Fig. 1A). Cells were then stimulated and flow cytometry
was performed for CD137 and compared to ICS for TNFα or
IFNγ (Fig. 1B). Both assays had comparable sensitivity. How-
ever, 3.09% of CD8+ T cells were in the NGFR−/CD137+

quadrant (Fig. 1B), illustrating a high background in this assay
due to either constitutive low-level expression or bystander T cell
activation. However, only 0.08% and 0.13% of CD8+ T cells
were in the NGFR−/TNFα+ or NGFR−/IFNγ+ compartments,
respectively (Fig. 1B). In this model system ICS provided greater
specificity than CD137 staining.

TCR Alpha/Beta Pairs Can Be Recovered from Primary T Cells after
Intracellular Staining with Efficiency Equivalent to Multimer-Based
Selection. Anticipating that TCR mRNA sequencing would be
less robust from fixed and permeabilized cells, we overexpressed
melanoma antigen MART-1 TCR (clone F5) in peripheral blood
mononuclear cells (PBMCs) to test if TCRs could be sequenced
from IC-stained T cells with a high level of target mRNA (12,
44). Cells were then activated with MART-1 peptide and stained
for intracellular TNFα and IFNγ by adapting a published method
of single-cell mRNA sequencing in permeabilized cells that used
paraformaldehyde (PFA) as a cross-linker (24). In parallel, a
control arm was set up where cells were selected with MART-1
multimer. Reactive cells were then singly deposited by FACS for
alpha/beta-paired TCR sequencing (SI Appendix, Fig. S1). TCR
clones were isolated from single-cell RT-PCR reactions. Both
techniques had equivalent efficiency, measured as a fraction of
TCR alpha/beta pairs recovered (75%). This proof-of-concept
experiment demonstrated single-cell TCR mRNA could be se-
quenced from cells that were stained for intracellular antigens.
Having shown ability to sequence TCRs in the setting of

overexpression, we sought to measure antigen-specific TCR re-
covery in a population of normal human PBMCs. As a proof of
concept, virus-specific T cell responses from two different donors
were profiled. Cytomegalovirus (CMV) and EBV are common
herpes viruses that infect over 50% of people and generate large
memory T cell responses (45). Virus-specific CD8+ T cells were
singly deposited based on TNFα and IFNγ expression into RT-
PCR wells and TCRs were subsequently sequenced (Fig. 2B). As
a control, we also sorted and sequenced cells based on CD137
production and multimer staining (Fig. 2B).
All three techniques (ICS, multimer staining, and CD137

staining) recovered clonal TCRs (Fig. 2C). Although the CMV
response was oligoclonal, some clones were clearly dominant. In
fact, the same dominant clone appeared in all three techniques.
In contrast, the EBV-responding TCRs were polyclonal, which is
typical of EBV responses. The dominant EBV clone identified
by tetramer and CD137 staining appeared only once in ICS;
however, the subdominant clones appeared 3/55 and 7/55 times
as measured by ICS. Cumulatively, these data showed that ICS
could enable the isolation and sequencing of TCRs in single
cells. This experiment also showed that ICS can be used for TCR
cloning with reasonable efficiency, 33 to 54% compared to 55 to
94% with live cells (Fig. 2C).
The true test for TCR antigen specificity is clonal sequence

isolation and transplantation into allogeneic human T cells. This
tests if an assay will identify high-affinity TCRs, rather than
simply cross-reactive clones. Four CMV TCR clones were cloned
into retroviral vectors and overexpressed in human PBMCs
(Fig. 2D) (Dataset S1). Functional capability of these clones was
evaluated by cytokine production in a cytotoxicity assay. T cells
transduced with the CMV TCRs were cocultured with a PC3
epithelial prostate cancer cell line that expressed HLA-A*02:01
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with or without the CMV pp65 protein. All three CMV TCRs
that appeared in both tetramer and ICS-based selection led to
the production of IFNγ when T cells were cocultured with target
cells that express CMV pp65 protein (Fig. 2E). Additionally,
these same T cells were able to specifically kill target cells that
expressed the protein (Fig. 2F).

T Regulatory Cell TCR Identification by Intranuclear Profiling of
FOXP3. To explore the ability of ICS-based TCR sequencing to
characterize immune responses beyond those mediated by cy-
totoxic CD8+ T cells, we performed single-cell sequencing of
T cells that expressed the classic Treg markers: CD3, CD4,
CD25, and FOXP3 (Fig. 3A) (46). Knowledge of Treg epitopes
has been limited to indirect analyses due to the need to pheno-
type Tregs exclusively by nuclear transcription factor FOXP3
(47). Our ICS-based cloning efficiently isolated TCRs in this
population, as 33 out of 40 single cells deposited returned pro-
ductive alpha/beta pairs (83%) (Fig. 3A). A specific peptide was
not queried, thus the TCRs identified did not show any clonality,
unlike the viral antigen-specific CD8+ T cells analyzed previ-
ously (Fig. 3B). Thus, ICS-based selection can identify TCRs
across T cell phenotypes and functionalities.

Single-Cell Sequencing of Fixed and Permeabilized Cells in Droplet-
Based Format. Very large TCR diversity as well as clonal expan-
sion necessitates sequencing of hundreds of cells to understand
the scope of reactivity. Current techniques for parallel single-cell
sequencing in thousands of cells are based on microfluidics
technology, which encapsulates cells into fluid droplets (48). In
our hands, PFA fixed cells performed poorly with a droplet-
based sequencing approach (Fig. 4B). As an alternative, we op-
timized the protocol with a chemically reversible cross-linker,
DSP [Lomant’s reagent, 3,3′-dithiodipropionic acid di(N-
hydroxysuccinimide ester)] (SI Appendix, Fig. S2) (49). DSP

reacts with primary amines, has a disulfide bond in the center,
and can be cleaved via a reducing agent. This reagent has also
been used to preserve cells prior to sequencing, as well as for
sequencing of permeabilized cells selected by phosphoprotein,
but neither example was adapted for droplet-based sequencing
(50, 51).
CLInt-Seq was used to sequence αβ TCRs in a bulk T cell

population via the 10× Genomics V(D)J library construction
protocol (Fig. 4A). Live cells and PFA-fixed cells were included
for comparison. The cDNA profile of CLInt-Seq processed cells
was comparable to live cells, but PFA-treated cells had a poor
cDNA profile (Fig. 4B). Subsequently, these samples were se-
quenced and single-cell data analyzed (Fig. 4C). CLInt-Seq cells
performed similarly to a live cell control in terms of library
cDNA concentration and number of cells successfully se-
quenced. The proportion of clones with both alpha and beta
chains is indicative of the sample quality. CLInt-Seq cells con-
tained only 4% of unpaired clones, compared to 8% in live cells.
The PFA cross-linking yielded 81% of unpaired clones. The di-
versity of live and CLInt-Seq T cells was similar (Fig. 4D). Thus,
gene expression analysis via droplet-based sequencing can be
performed in permeabilized cells, fixed via DSP cross-linking.

CLInt-Seq Coupled to Droplet-Based Sequencing Recovers EBV-
Specific TCRs. It is critical that mRNA remains fixed to cellular
protein mass prior to single-cell droplet encapsulation. If the
mRNA is released prior to a cell being encapsulated into a fluid
droplet, then mRNA cellular origin will not be identified cor-
rectly and αβ pairing will be lost. This can be estimated by re-
covery of correctly paired TCR αβ clones. A population of
CLInt-Seq processed, EBV-specific CD8+ T cells was selected by
IFNγ and TNFα expression and sequenced with the 10× V(D)J
single-cell protocol (Fig. 5A). The resulting clonotypes were
compared to those derived from live, tetramer-selected cells.
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Both CLInt-Seq processed cells and live cells returned a similar
number of cells captured (Fig. 5B). Live cells showed greater
recovery of αβ pairs (992 pairs vs. 430 pairs), as well as a lower
frequency of unpaired clones (21% compared to 37%, Fig. 5B).
To determine if mRNA identity had been maintained, we com-
pared clonotypes recovered by CLInt-Seq to tetramer-selected
live cells. The two clonotype populations overlapped signifi-
cantly, indicating that TCR mRNA can be faithfully recovered
from single cells prepared in this manner (Fig. 5C). The shared
TCRs also represented a diversity of clonotype frequencies
(Fig. 5D). This indicated that mRNA cellular origin is main-
tained when cells are processed per the CLInt-Seq protocol.

Discussion
We describe a technology for high-throughput mRNA se-
quencing at the single-cell level in cells that have been fixed and
permeabilized to allow for intracellular staining. Primary amines
of protein are cross-linked by DSP, a homobifunctional and
cleavable cross-linker, which fixes the RNA inside the cell. En-
capsulation of single cells into fluid droplets by the droplet-based
cell barcoding, allows for DSP cleaving and release of mRNA for
the reverse transcription reaction. This technology can be gen-
eralized for any cell type for profiling gene expression in minor
populations of cells that cannot be selected by a set of surface
markers. As an example, cells could be selected based on ex-
pression of one or more transcription factors, which function
cooperatively to define cell fate and function. In the lymphocyte
lineage, this technology could be used to clone B cell receptors
for antibody development. B cells can be identified via activation
assays and intracellular activation marker staining. Once the
B cell receptor is engaged, the phosphorylated form of Bruton’s
tyrosine kinase is generated and could possibly be used as a
marker of antigen-specific B cells (52). Multiomics techniques
for parallel measurement of gene expression and protein abun-
dance have been described; however, thus far, they have been
limited to the cell surface proteome (53, 54). These techniques
use antibody-oligo complexes that allow oligo barcode se-
quencing in parallel with cellular mRNA, to quantify protein
abundance. Staining for intracellular antigens would allow for
such analysis without the cell surface proteome limitation.

In future work in T cells, CLInt-Seq could help improve our
understanding of the T cell response to diverse antigens. Cur-
rently, only three viruses dominate the landscape of known TCR-
epitope reactivities. Of the 193 unique, well-described TCR-
epitope reactivities in the published literature, 100 of them are
derived from CMV, EBV, or HIV (55). Insights gained are ex-
trapolated to other self or viral antigens and systems, but no two
TCR-epitope reactivities are identical (56–58). The uniqueness
of each TCR reactivity is illustrated in systems where a large
effort has been made in defining and characterizing the T cell
response, such as HIV. A rare subset of HIV-positive individuals,
termed elite controllers, keep viral load low for decades pre-
sumably by the CD8+ T cell activity directed against a specific
HLA allele, B*57 (57, 59, 60). Subdominant, low frequency
HLA-B*57-restricted TCRs are particularly shown to have
strong effector activity, by suppressing viral replication (57). Less
is known about T cell responses to nonviral antigens; however,
existing data suggest that specific TCR reactivities can determine
physiological outcomes. Type 1 diabetes is characterized by
progressive loss of insulin-producing beta cells of the pancreas
(56). This loss is mediated by CD4+ and CD8+ T cells that
recognize self-antigen with low affinity (56, 61–63). CD4+ T cell
reactivity against beta cells has been shown to be mediated by
recognition of peptide fusions (61). Both HIV and diabetes, as
an example of self-tissue destruction by T cells that somehow
escaped deletion in the thymus, exemplify the need to study
specific TCR-epitope pairs, to be able to answer specific ques-
tions in health and disease. CLInt-Seq allows stimulation of
T cells with over 100 epitopes in parallel and recovers low-fre-
quency, antigen-specific TCRs that could rapidly expand the
systematic study of TCR-epitope interactions beyond these viral
responses (32, 36).
Rather than focusing on specific antigen reactivities, CLInt-

Seq can be used to characterize TCRs in T cell subpopulations
with critical roles in immune response. For example, antigen-
specific tumor infiltrating lymphocytes (TILs) are found inside
the CD39/CD103 compartment (64). However, identifying
strongly reactive, antitumor TILs remains a challenge. T cells are
a dynamic lineage, where differentiation and activation events
are directed by groups of transcription factors (65). Nur77 has
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been shown to be up-regulated upon TCR engagement and
signaling, and in fact functions as a rheostat to indicate TCR
signaling strength (66, 67). More recently, the Nur77 family of
transcription factors has been implicated in T cell exhaustion,
which further confirms its role in T cell receptor signaling (68).
CLInt-Seq staining for nuclear transcription factor expression
could help identify cancer-specific CD4+ and CD8+ T cells in
the tumor microenvironment (66, 67).
We anticipate that CLInt-Seq will speed the identification of

candidate therapeutic TCRs immediately suitable for preclinical
development. As single-cell TCR sequencing maintains alpha/
beta pairing of receptors, the reconstructed TCR sequences can
be readily tested as potential adoptive T cell transfer-based
therapeutics (42, 44, 69). Adoptive cell therapy involves the in-
fusion of laboratory-modified T cells that can recognize tumor,
viral, or self-antigens (42, 43). CLInt-Seq readily identified TCRs
reactive to EBV and could be used to discover TCRs reactive to
any antigen of interest, including cancer antigens like NY-ESO-1
(43). In our group, we are pursuing multiple projects to develop
TCR reagents for treatment of prostate cancer. We have applied
CLInt-Seq to identify TCRs reactive with peptide epitopes of
prostatic acid phosphatase, which has been pursued by multiple
groups as an immunotherapeutic target in prostate cancer
(70–73). Prior work on this target resulted in an FDA-approved
cellular therapy for prostate cancer, Sipuleucel-T (73).

Analogously, Treg TCR profiling using CLInt-Seq can query
antigen-specific TCRs for possible use with Treg adoptive cell
therapy to direct an immunosuppressive response (46).

Methods
Methods on cell culture, cell sorting, TCR cloning from 96-well plates, TCR
vector construction, virus generation, and cytotoxicity testing were adapted
from our prior publications and are available in SI Appendix.

PFA-Based Intracellular Staining. PBMCs were washed two times with phos-
phate-buffered saline (PBS) (Fisher Scientific, cat. no. MT-46013CM) and once
with TCRPMI (RPMI 1640 [Thermo Fisher, cat. no. 31800089 supplemented
with 10% fetal bovine serum (Omega Scientific, cat. no. FB-11), 1× Glutamax
(Thermo Fisher, cat. no. 35050061), 1× sodium pyruvate (Thermo Fisher, cat.
no. 11360070), 10 mM Hepes (Thermo Fisher, cat. no. 15630130), 1× non-
essential amino acids (Thermo Fisher, cat. no.11140050) and 50 μM β-mer-
captoethanol (Sigma-Aldrich, cat. no. M3148]). Then cells were resuspended
in TCRPMI at 500,000 cells/100 μL of media and aliquoted into 96-well plates
(Corning, cat. no. 353077) for a 12-h rest prior to intracellular staining
stimulation. Then, 100 μL of TCRPMI with 20 μg/mL of peptide and 2 μg/mL
of CD28/49d antibodies (BD, cat. no. 347690) were added to each well. AIM V
complete media (Thermo Fisher, cat. no. 12055083) was used for the TCR
overexpression experiment. Cells were incubated for 1 h at 37 °C 5% CO2

and 20 μL of 10× Brefeldin A (Biolegend, cat. no. 420601) was added to each
well. Cells were further incubated for 8 h. For TCR sequencing cells were
stained immediately under RNase-free conditions with the FRISCR (fixed and
recovered intact single cell RNA) protocol adapted from ref. 24. Briefly each
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well was washed twice with 200 μL of wash buffer, which contains nuclease-
free water (Thermo Fisher, cat. no. 4387936), 10× molecular biology grade
PBS, 1% nuclease-free bovine serum albumin (BSA) (Gemini, cat. no. 700-
106P), and 1:400 RNAsin Plus (Promega, cat. no. N2615). For TCR over-
expression and subsequent sequencing experiment we used RNAsin Plus at
1:40,000 dilution. The cells were stained with the following surface anti-
bodies: CD3-APCCy7 (Thermo Fisher, cat. no. 47-0036-42), CD8a-PE (Thermo
Fisher, cat. no. 12-0088-42), and CD4-PECy7 (Biolegend, cat. no. 300512).
After staining for 15 min at 4 °C, cells were washed with wash buffer and
fixed with 100 μL of 4% PFA (EMS, cat. no. 15710) for 10 min at 4 °C. Then
cells are washed twice and resuspended in 1% BSA buffer with 0.1% Triton
X-100 (Sigma-Aldrich, cat. no. T8787) for 10 min. Cells were then washed and
subsequently stained with intracellular antibodies in wash buffer for IFNγ-
APC (Biolegend, cat. no. 506510), TNFα-FITC (Biolegend, cat. no. 502906),
FoxP3-A488 (Biolegend, cat. no. 320012), and msIgG1-A488 (Thermo Fisher,
cat. no. MG120). Cells were then washed and resuspended in wash buffer for
FACS analysis. Intracellular staining where we did not plan to do TCR se-
quencing was done in the absence of RNAsin Plus inhibitor.

CLInt-Seq Staining. All buffers except the cross-linker step contained 1:400
RNAsin and molecular biology grade PBS to inhibit RNA degradation.
Staining was performed in a 96-well U-bottom plate. Cells were first washed
twice in 200 μL of 1% BSA buffer with 1:400 RNAsin (wash buffer) and in-
cubated for 15 min on ice with antibodies against surface antigens. DSP
(Thermo Fisher, cat. no. 22585) was stored at −20 °C in a desiccant-filled
container. Immediately prior to the experiment, DSP was left at room
temperature for at least 30 min and then prepared to a concentration of
50 mg/mL in molecular biology grade dimethyl sulfoxide (Sigma, cat. no.
D8418-50ML). Then, 1 mg/mL solution was prepared in molecular biology
grade PBS, by vortexing 20 μL of DSP in a 15-mL conical tube and adding
1 mL of PBS with a P1000 pipette. DSP was filtered using a 40-μm Flowmi
strainer (Sigma, cat. no. BAH136800040-50EA). Then 0.25 mg/mL solution
was prepared. Cells were washed once with wash buffer and twice with PBS
and resuspended in 200 μL of 0.25 mg/mL DSP (Thermo Fisher). Cells were
incubated at room temperature for 30 min and quenched with 20 mM Tris
(Thermo Fisher, cat. no. AM9850G). Cells were then washed twice and in-
cubated for 10 min with 100 μL of 0.05% Triton X-100 (Thermo Fisher) in
wash buffer. Subsequently, cells were washed and resuspended in wash

buffer for 20 min with antibodies against intracellular antigens. Then, cells
were washed again and resuspended in wash buffer for FACS sorting.

The 10× Genomics Single-Cell Library Construction and Sequencing. FACS-iso-
lated cells were collected in a 2-mL Eppendorf tube that contained 400 μL of
0.04% BSA with 1:400 RNAsin. Cells were pelleted at 750 × g for 3 min.
Supernatant was discarded leaving 30 to 60 μL, to reach a final concentra-
tion of more than 100 cells/μL. When we knew we could not get enough
antigen-specific T cells, we added Jurkat E6.1 carrier cells. The 10× Genomics
human V(D)J libraries were prepared by the UCLA Technology Center for
Genomics and Bioinformatics following the standard protocol for 10× library
construction. Single-cell TCR libraries were sequenced by Illumina MiSeq or
NextSeq. Data were analyzed by using the 10× Genomics pipeline to
generate Vloupe files.

CD137 and Tetramer Staining. PBMCs for TCR profiling were cultured in
TCRPMI as described above and reported previously (12). For TCR over-
expression experiments we used AIM V media. PBMCs were washed with PBS
two times and once with media, subsequently resuspended at 5 × 105 cells/
100 μL and aliquoted in a 96-well plate for a 12-h rest. Then, cells were
stimulated with 20 μg/mL of antigenic peptide and 2 μg/mL of CD28/49d in
100 μL of media for 24 h. PBMCs were then washed with wash buffer as
described above, but RNAsin Plus inhibitor was excluded. PBMCs were then
stained with CD3-APCCy7 (Thermo Fisher, cat. no. 47-0036-42), CD8a-PE
(Thermo Fisher, cat. no. 12-0088-42), CD4-PECy7, and CD137-APC (Biolegend,
cat. no. 309810) antibody for 20 min. Subsequently, cells were washed,
resuspended in wash buffer and 7-aminoactinomycin D (7-AAD) (BD, cat. no.
559925) or DAPI was added immediately prior to FACS analysis or sorting.
Multimer staining was performed with tetramers as previously described,
and MART-1 (ELAGIGILTV) HLA-A2 tetramer was made in-house (12). Tet-
ramers for NY-ESO-1 (MBL, cat. no. TB-M011-1), CMV pp65 (MBL, cat. no. TB-
0010-2), and EBV BMLF1 (MBL, cat. no. TB-M011-2) were purchased.

Data Availability. The data discussed in this publication have been deposited
in NCBI’s Gene Expression Omnibus (74) and are accessible through GEO
series accession no. GSE159927.
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